Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles computations.
نویسندگان
چکیده
The origin of the photoactivity in graphitic carbon nitride (g-C3N4) and the strategies for improving its photocatalytic efficiency were systematically investigated using first-principles computations. We found that g-C3N4 composed of tri-s-triazine units (g-CN1) is preferable in photocatalysis, owing to its visible-light absorption and appropriate band edge potentials. Despite the benefit of nanocrystallization of g-CN1, excessively minimized and passivated g-CN1 nanosheets (g-CN1NSs) should be inhibited, due to the intensely broadened band gaps in these structures. C- or N-vacancies in g-CN1NSs lead to gap states and smaller band widths, which should also be restrained. Compared with C substitution in B doped g-CN1NSs, N-substitution is favourable for enhancing the photoactivity of g-CN1NSs, due to the red-shift light absorption and the absence of gap states within this structure. Both WTe2 coupled and CdSe cluster loaded g-CN1NSs have decreased band gaps and directly separated carriers, which are beneficial to promote the photoactivity of g-CN1NSs. Among these modified g-CN1NS photocatalysts, WTe2 coupled g-CN1NSs are more preferable, as a result of their smaller band gap, free gap states and more rapid migration of excitons.
منابع مشابه
Graphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light
Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملA facile method of activating graphitic carbon nitride for enhanced photocatalytic activity.
Activated graphitic carbon nitride (g-C3N4) with enhanced photocatalytic capability under visible light irradiation was fabricated by using a facile chemical activation treatment method. In the chemical activation, a mixed solution of hydrogen peroxide and ammonia was employed. The yield can reach as high as 90% after the activation process. The activation process did not change the crystal str...
متن کاملCarbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies.
Interfacing carbon nanodots (C-dots) with graphitic carbon nitride (g-C3N4) produces a metal-free system that has recently demonstrated significant enhancement of photo-catalytic performance for water splitting into hydrogen [Science, 2015, 347, 970-974]. However, the underlying photo-catalytic mechanism is not fully established. Herein, we have carried out density functional theory (DFT) calcu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 9 شماره
صفحات -
تاریخ انتشار 2015